Spitzer Irac Sparsely Sampled Phase Curve of the Exoplanet Wasp-14b
نویسندگان
چکیده
Motivated by a high Spitzer IRAC oversubscription rate, we present a new technique of randomly and sparsely sampling the phase curves of hot Jupiters. Snapshot phase curves are enabled by technical advances in precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of approximately two more efficient than full phase curve observations, and are furthermore easier to insert into the Spitzer observing schedule. We present our pilot study from this program using the exoplanet WASP-14b. Data of this system were taken both as a sparsely sampled phase curve as well as a staring-mode phase curve. Both data sets, as well as snapshot-style observations of a calibration star, are used to validate this technique. By fitting our WASP-14b phase snapshot data set, we successfully recover physical parameters for the transit and eclipse depths as well as the amplitude and maximum and minimum of the phase curve shape of this slightly eccentric hot Jupiter. We place a limit on the potential phase to phase variation of these parameters since our data are taken over many phases over the course of a year. We see no evidence for eclipse depth variations compared to other published WASP-14b eclipse depths over a 3.5 year baseline.
منابع مشابه
3.6 AND 4.5 μm PHASE CURVES OF THE HIGHLY IRRADIATED ECCENTRIC HOT JUPITER WASP-14b
We present full-orbit phase curve observations of the eccentric (e ∼ 0.08) transiting hot Jupiter WASP-14b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. We use two different methods for removing the intrapixel sensitivity effect and compare their efficacy in decoupling the instrumental noise. Our measured secondary eclipse depths of 0.1882% ± 0.0048% and 0.2247% ± 0.00...
متن کاملPHASE CURVES OF THE HIGHLY-IRRADIATED ECCENTRIC HOT JUPITER WASP-14b
We present full-orbit phase curve observations of the eccentric (e ∼ 0.08) transiting hot Jupiter WASP-14b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. We use two different methods for removing the intrapixel sensitivity effect and compare their efficacy in decoupling the instrumental noise. Our measured secondary eclipse depths of 0.1882% ± 0.0048% and 0.2247% ± 0.00...
متن کاملSPITZER SECONDARY ECLIPSE DEPTHS WITH MULTIPLE INTRAPIXEL SENSITIVITY CORRECTION METHODS OBSERVATIONS OF WASP-13b, WASP-15b, WASP-16b, WASP-62b, AND HAT-P-22b
We measure the 4.5 μm thermal emission of five transiting hot Jupiters, WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b using channel 2 of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Significant intrapixel sensitivity variations in Spitzer IRAC data require careful correction in order to achieve precision on the order of several hundred parts per million (ppm) for the...
متن کاملSpitzer Irac Photometry for Time Series in Crowded Fields
We develop a new photometry algorithm that is optimized for Spitzer time series in crowded fields and that is particularly adapted to faint and/or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasaden...
متن کاملTowards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b⋆
Context. Mapping distant worlds is the next frontier for exoplanet infrared (IR) photometry studies. Ultimately, constraining spatial and temporal properties of an exoplanet atmosphere (e.g., its temperature) will provide further insight into its physics. For tidallylocked hot Jupiters that transit and are eclipsed by their host star, the first steps are now possible. Aims. Our aim is to constr...
متن کامل